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~ - - A  new diagram for the representat ion of stress states is proposed and compared with Nadai 's stress 
diagram. The diagram is a graph whose axes are labelled as the differences of the principal stresses (or 2 - ¢r 3 as 
ordinate axis, ¢r 1 -~2  as the abscissa; where ~z > ~2 > ~3 are the principal stresses). The design of the plot has been 
deliberately modelled on that of the 'log Flinn' diagram which is used to represent  finite strain ellipsoids. The 
position of the plotted stress state on this diagram depends  on the nature of the deviatoric (non-hydrostatic) 
component  of the stress tensor. The distance of the plot ted stress from the origin corresponds broadly to the 
departure of the stress from a hydrostatic state and the parameter  R, defined as the gradient of the line joining the 
plot ted state to the origin, expresses the type of symmetry possessed by the stress tensor. 

It is explained how the diagram can be used to represent  calculated palaeostresses and, in particular, how the 
parameter  R can be found directly from some existing methods  of stress analysis currently in use. 

Besides its proposed function to represent  the results of such analyses it is felt that the use of the diagram may 
make clear the essential e lements  of  the definitions of wen-known terms used to describe particular stress states 
(e.g. plane stress, triaxial stress, axial compression, etc.). 

I N T R O D U C T I O N  

WHILE structural geology textbooks make  extensive use 
of strain diagrams to illustrate the interrelat ion between,  
and to classify, types of finite strain ellipsoids, equivalent  
d iagrammat ic  representa t ion of stress states, however ,  is 
rarely used. Instead,  most  authors content  themselves  by 
providing inventories of  the possible stress states accom-  
pauied  by their  definitions. Fur thermore ,  al though 
numerous  finite strain diagrams have been  proposed  
(see for example  R am s ay  1967, pp. 134-139) ,  few such 
diagrams exist for stress. 

The  choice of suitable stress diagrams should be  
guided by the following considerations. Firstly, it seems 
logical to choose a diagram which has parallel propert ies  
to widely-used finite strain diagrams. This should lead 
to easier  understanding and wider application. Sec- 
ondly, the design of the d iagram should be  biased by 
geological considerations so that  the components  of the 
(palaeo)-stress  tensor  that  can be es t imated geologically 
appear  in a key  position. 

In this note  two stress diagrams,  one of which is pro-  
posed for the first time, will be  examined.  Both  are the 
counterpar ts  of popular  strain diagrams. The  new 
diagram has the added advantage that  results of some 
recent  methods  of palaeostress  analysis can be plot ted 
on it directly. These  methods  are briefly reviewed and 
their  potent ial  application to new geological situations is 
suggested. 

The  principal deviatoric stresses can be plot ted on a 
graph with triangular coordinates (Fig. 1) because of 
their p roper ty  that 0-~ + 0.~ + 0-~ = O. The position of a 
plot ted stress state is independent  of its hydrostatic 
component .  Stress states which fall on the same straight 
Line through the origin share the same value of 
pa rame te r  

20-1 - 0 . !  - 0-3 2(0-1 - 0-3) - ( 1 )  

0-1 -- 0-3 0-1 -- 0.3 

This pa rame te r  was used by J, ode  for stresses applied in 
deformat ion  exper iments  with metals to express the 
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T H E  N A D A I  STRESS D I A G R A M  
This d iagram (Nadai  1963, p.72) represents  stress 

states in terms of the principal deviatoric stresses 0.~, 0.~ 
and cr~ where  0.~ --- 0.1 - 8, 0.~ = 0.2- &, 0.3 = 0.3- 8 and 0.1, 
0.2, 0.3, are the principal stresses and t~ is the mean  stress 
or  hydrostat ic  stress componen t  equal  to (0-1 +0-2+0-3)/3. 

*Presen t  address :  I n s t i t uu t  v o o r  A a r d w e t e n s c h a p p e n ,  B u d a p e s t l a a n  
4, 3 5 0 8  T A  Ut rech t ,  T h e  N e t h e r l a n d s .  

Fig. 1. Nadal's stress diagram. The axes are labelled as the principal 
deviatoric stresses. These stresses are plotted with U'iangular coordi- 
nates which is facilitated by the fact that they add up to a constant sum 
i.e. cy~ + ~ + ¢r~ = 0. Axial stress states lie along the ~ and ~ axes. 
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position of the intermediate principal stress (o-2) with 
respect to 0" 1 and 0" 3 (see Nadai 1931, p.77). A disadvan- 
tage of I~ is that it is difficult to read off the diagram 
because radial fines on the diagram drawn at regular 
intervals of ~ do not enclose equal angles. 

An advantage of Nadai 's diagram is, however, that the 
magnitude of the second deviatoric stress invariant J2, a 
quantity fundamental  to the theory of plasticity, is 
directly proport ional  to the distance of the plotted stress 
state from the origin. The diagram illustrates in direct 
fashion the stress required for plastic yielding of the 
material according to Von Mises yield criterion which 
predicts that yielding will occur when J2 exceeds a cer- 
tain value. The  critical stress states for yielding therefore  
tie on a circle centred on the origin of the diagram. 

The corresponding diagram for finite strain, also 
proposed  by Nadai, was brought to the attention of 
structural geologists by Hossack (1968). The layout of 
the diagram is identical but  with axes labelled with ~1, e2, 
and ~3 (the principal natural strains). For  the simplest 
possible deformation involving a constant stress and co- 
axial strain history in a linear isotropic material, ~ for the 
stress state will have the same value as the corresponding 
parameter  for the finite strain ~. No such correspon- 
d e n c e  will exist between the strain and stress states for 
more complicated deformation histories. 

the stress tensor the values d 1 and d 2 being closely 
related to the principal deviatoric stresses. 

o'~ = '/3 (d l  + 2d~) o.~ = % (dl  - d2) o.j = 
-~/3 ( 2 d ,  + a2). ( 2 )  

The quantity da, defined as err - o'3, corresponds to what 
is often called the differential stress. As can be seen in 
Fig. 2 lines of constant d3 have a slope o f -1  and have the 
equation dl = -42 + da. 

A hydrostatic state of stress (o h = o- 2 = era) plots at the 
origin whilst axial stress states (states with two equal 
principal stresses) fall along the coordinate axes of the 
diagram: axial extension states (o.~ = o'2 > o'3, o'; = o-~ -- 
-40"5) fall along the ordinate axis and axial compression 
states (o'l>o'2=o'a, o h = -2er 2 = -2o.~) give points lying 
along the abscissa. As can be seen from equation (2) 
above, the stresses where o-~ = 0 (plane deviatoric stress 
states) occur along the dl -- d~ line on the diagram. 

The last three  families of stress states are represented 
by straight lines through the origin. As will appear  from 
later discussion, it is convenient to classify stress states 
into families each defining straight fines on the graph. 
Such fines which go through the origin define families of 
stress states which have the same R value, the latter 
defined as the gradient of the line, i.e. R -- dl/d 2 

O d o r  stress states 

T H E  N E W  S T R E S S  D I A G R A M  

The proposed diagram. (Fig. 2) records the relation- 
ship between the principal stress differences by using dl 
(=  ere - era) as ordinate axis and d2 (=  o.1 - ere) as the 
abscissa axis. Because dl and d2 are independent  of the 
absolute magnitude of the principal stresses, the 
diagram cannot represent  the hydrostatic component  of 

Table 1 summarises t h e  restrictions placed on the 
values of the principal stresses by the definitions of some 
well-known stress states. These are the definitions used 
by Nye (1964) and Means (1976). Some stress states are 
defined in such a way that their plotted positions on the 
stress diagram occupy areas, whereas others are 
restricted to lines and some occupy single points. This 
it, formation is summarized in Table 1 which also shows 

0 

~ r o m ~  
m o # s ~  . . . .  

} 

i 

d 2 = O' I - o r  2 

Fig. 2. The proposed stress diagram. 
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Table 1. Restrictions on the principal stresses 

Principal Stresses Position on diagram Equation 
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0t I Ot 2 Ot 3 

Triaxial Occupy areas on the 
stress states + stress diagram 

+ + - Stress state fields 
( n o  z e r o  

s t r e s s e s )  + + + 

Biaxial 0 Occupy lines on the 
stress states + 0 - stress diagram 
(plane stress) + + 0 Stress state families 
(1 zero stress) 

dl = -2d2 - 36 
dl = d2 .- 36 
dl = -~hd: + 3/e 6 

Uniaxial Uniaxial 
stress states 0 0 - tension 

(2 zero Uniaxial 
stresses) + 0 0 compression 

State of 
No stress 0 0 0 

(3 zero 
strosses) 

Occupy points on the 
diagram 

dl = - 3 6 d 2 = 0  

dl = 0 d2 = 36 

d~ = 0  d:=O 
when 6 = 0 

the equations describing the position on the plot of such 
lines and points. It should be noted that these equations 
involve the hydrostatic stress component ,  8, implying 
that these stress states can only be plotted on stress plots 
where 8 is specified. Three  examples of stress plots with 
specified values of 8 are shown in Fig. 3. Particularly 
interesting is the position of plane stress states on these 
diagrams. The  displacement of the cr 2 = 0 line with 
change in the hydrostatic component  is brought out by 
the 3 diagram~ in Fig. 3. It can be seen that f rom Fig. 3 
and the equation for ~r 2 = 0 states (dl = d~ - 38) that 
the plane stress state of this type ~arresponds to R = 1 
states only in the absence of a hydrostatic component  (8 
= 0). As has been pointed out by Ramsay & Wood 
(1973), an analogous situation exists for finite strain 
ellipsoids, namely that plane strain corresponds to K = 1 
ellipsoids only in the case of no volume change, i.e. when 

= % log~ (1 + A) = 0. K is a parameter  for the finite 
strain ellipsoid defined by Flinn (1964) and directly 
comparable to the R value for the stress [K = (el - e2)/ 

(~2 -- E3)]" 

Superimposition of stress states 

As is illustrated above, the diagram has parallel 
propert ies to the log Flinn diagram for finite strain. 
Another  such property,  discussed by Flinn (1979, p.296 
and Fig. 2a) is that the tensor which is the product  of 
coaxial superposition of the two tensors simplifies to a 
vector addition; the total tensor being the resultant of 
two vectors defined by joining the points representing 
the stress states to the origin. 

SIGNIFICANCE OF THE PAIL~METER R 

As R is the ratio of the principal stress differences it is 
also the ratio of the principal shearing stresses (v 2 3/'1"1 2)" 
In Mohr 's  representat ion of the stress, R defines the 
shape of the arbelos (figure bounded by the circles 

representing the stresses in the principal planes) as 
opposed to its size or position on the Mohr  diagram. 

The ratio R, like Lode 's  t~, fulfills the purpose of fixing 
the position of cr 2 with respect to cr 1 and cr3. These 
parameters  are related: 

-- dl - ~  a n d R =  1 - p .  

For  the strain histories described above where V, (stress 
state) -- ~ (finite strain), then we find R is equal to 
Flinn's K. 

In fact Flinn's diagram for finite strain is a companion- 
diagram to the new stress diagram proposed here  and 
these two diagrams have the same mutual relationship as 
the Nadai stress and Nadai strain diagrams. 

A fur ther  proper ty  of the ratio R concerns the orienta- 
tion of resolved shear  stress on a plane with a particular 
orientat ion with respect to the principal axes of stress. 
Bot t  (1959, equation 7) has shown that the direction of 
this shear stress is determined by the ratio of the differ- 
ences of the principal stresses, which we have already 
termed R. This proper ty  of R is utilized by the methods 
of stress determinat ion described below. 

THE CALCULATION OF R FOR GEOLOGICAL 
STRESSES 

The method of Carey (Carey 1976, Carey & Brunier 
1974, Carey 1979) 

This determines numerically the direction of the prin- 
cipal stresses and a parameter  simply related to R from 
data consisting of orientations of fault planes together  
with associated slickensides. The method assumes a 
homogeneous  stress field existed within the domain 
from which the data was collected, and also that the 
slickensides all formed under  influence of that same 
stress field. The method  permits the faults themselves to 
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10 
negative hydrostatic component ((~ = - ~)  

, 7/  

~ tension / / 

62 10 

stress states 

from each movement  plane it is possible to delimit the 
maximum range of possible orientations of the 0-~, and 0- 3 
axes. Combining data with the help of the stereographie 
projection leads to a reduction of the size of the orienta- 
tion fields containing o'i and 0-3. Angelier & Mechler 
(1977) claim that the shapes of the fields containing pos- 
sible 0-1 and 0-3 directions are an indication of O = (o'1 - 
0-:)/(0-1 - 0-3). R can be easily calculated from ~: 

Results of these methods 

10 

dl 

no hydrostatic component ((~=0) 

. / / I  

/ 

0 L state of no stress 

_ _ /  
/ 

d2 10 

positive hydrostatic component (~r=~) 
10 .~ / 

/ 
/ /  

uniaxial --ox~:- / 
~ o e ~  compression .~ 

0 d2 10 

Fig. 3. Three examples of the stress plot  drawn for  specific values of the 
hydrostatic component or  mean stress (&), to i l lustrate how the posi- 
t ion of many stress states o1"1 the plot  depend on 8. The upper diagram 
corresponds to a negative (tensional) hydrostatic component;  those 
below represent no- and posit ive hydrostatic components respectively. 
The  different types of  shading arc used  to dist inguish different types of  

the triaxial stress states referred to in the  key and Table 1. 

have an earlier origin. There  are four unknowns in the 
calculation and a minimum of four fault plane/slicken- 
sides combinations are needed as data° 

This method of stress determination has also found 
application to ear thquake data derived from the quad- 
rantal pattern of compressional and dilational P waves. 

Figure 4 presents the results of the methods described 
above. Although the number  of determinations is so far 
small, and come from restricted types of structural reg- 
ions (high-level regimes with upright structures) a ten- 
dency for low R values is clearly shown. It may not be 
entirely coincidental that the bulk of finite strain 
determinations in similar low grade rocks show a similar 
predominance of low K values (Wood 1973). 

Possible application of these methods to other geological 
situations 

Several methods for palaeostress determination from 
sheared dykes enclosed in undeformed country rocks 
have been described (e.g. Berger  1971, Davidson & 
Park 1978). Although the assumptions made are essen- 
tially those involved in the methods summarized above, 
these methods allow only estimation of the orientation 
of the principal stresses. Carey's method  which provides 
more complete information about  the stress tensor while 
using the same type of data, has potential application to 
these problems. 

d1= o'2-a 

•///// /// 
////// 

/// 9 
//// 

? / / /  7 

//  4 

axial compre~ion 
d 2 = o'1-02 

R = 66  

R = .43  

R : .23 

R = .13 

The method of Angelier (1975, 1979) 

This graphical method uses the same data as Carey's 
method but  in addition the sense of movement  has to be 
inferred from the character of the slickensides or from 
similar evidence. With respect to the orientation data 

Fig. 4. Representa t ion  on the stress diagram of published palaeostress 
results derived from the me thods  described in the text. 1 - 6 are 
determinat ions  carried out  by Carey 1976; 1 and 2 - -Morv an ,  So of 
Paris Basin,  U. Jurassic; 3 - - n e a r  Mollendo,  S. Peru, Qua te rnary  
ignimbrites; 4 and 6---Locride, C. Greece,  Tertiary and Quaternary;  
5 - -Cepha lon ia ,  W. Greece,  Tert iary and  Quaternary .  Determinat ions  
7 - 9 are f rom sites in Crete  (Angelier  1975). A dominance  of low R 

values is present  in these results.  
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FUTURE USE OF THE D I A G R A M  

The  described new diagram has an obvious potential 
didactic use for displaying the possible variation in the 
deviatoric component  of the stress tensor and to sum- 
marize the essential distinctions between particular 
stress states which in the literature have acquired special 
names. 

A second application proposed here  for the stress plot 
is as a means of representat ion of the results of stress 
analyses. The extent of the role to be played by the plot 
in this respect will depend on  the completeness of results 
of such analyses. The methods outlined above when 
applied allow the non-hydrostat ic part of the stress state 
to be restricted to a particular type or family charac- 
terized by its R value but  a complete determinat ion of 
the stress deviator will require supplementary informa- 
tion. For  example, the magnitude of d3 (the differential 
stress) which can be sometimes estimated on the basis of 
observations on  the nature of faulting (Sibson 1974) or 
on features of a tectonite 's  microstructure (White 1975) 
would also serve to restrict the stress deviator to a linear 
zone on the plot, the width of which would depend on 
the degree of confidence placed on the estimate. In 
favourable circumstances it may be possible by the use of 
a combination of methods (for example those that yield 
estimates of R together  with those that estimate d3) to 
pin point more  closely the deviatoric part  of the palaeo- 
stress tensor by the intersection of the respective lines on 
the stress plot. 
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